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What to remember (from last week)
- Elastic scattering is sensitive to the time-averaged structure
- Inelastic scattering is sensitive to the dynamics

𝐺 𝑟, 𝑡 =
1
𝑁 )

!,#$%

&

𝛿 𝑟 − 𝑟!(𝑡) − 𝑟#(0)

𝑆!"# 𝑞⃗, 𝜔 =
1
2𝜋ℏ

+𝐺 𝑟, 𝑡 𝑒$%&(⃗𝑒%)*𝑑𝑟 𝑑𝑡

- Inelastic neutron scattering is the best tool 
   to measure phonon dispersion
   over entire range of                     w   and    k 

- Raman scattering involves optical phonons (near k=0)

- Brillouin scattering involves acoustic phonons (near k=0)



Effects related to anharmonicity
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V (r)  = a (r-re)2 – b (r-re)3 + - …



Effects related to anharmonicity
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- the blue color of water
- thermal expansion a of the lattice
- elasticity parameters C(…) or B and G are T-dependent
- heat capacity is not strictly constant at high T; 

deviation from Dulong-Petit rule c = 3NkB

since equipartition theorem demands Hamiltonian ~ p2  and ~ x2

- interaction of phonons with each other (phonon collisions)
- finite lifetime of phonons

wave solutions with linear superposition not stable
with nonlinear terms O (u2), i.e. ∂t ∂t u = C ∂x ∂x u  + O (u2)  

- heat conduction by phonons
- Grüneisen parameter connects a with c(T) etc

V (r)  = a (r-re)2 – b (r-re)3 + - …



First:
A nice example of the effect of anharmonicity
The color of water
… note that it is not elastic scattering (as for blue sky)
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www.lsbu.ac.uk/water
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Water

https://fr.wikipedia.org/wiki/Couleur_de_l%27eau



https://fr.wikipedia.org/wiki/Couleur_de_l%27eau

asymmetric stretch O-H
ν3=3756 cm−1 (2.662 μm)

bending motion H-O-H 
ν2=1595 cm−1 (6.269 μm)

symmetric stretch O-H
ν1=3657 cm−1 (2.734 μm)
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Water
3 fundamental vibrational excitations

Selection rules for the harmonic oscillator   D v = +- 1

Selection rules for the anharmonic oscillator   D v = +- 1, +-2, ... !!!

What happens for the anharmonic oscillator ?

This allows for overtones and combination bands, i.e. higher transition energies !!!



Some notes on the (an)harmonic oscillator
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Anharmonicity changes what we are used to
à selection rules … modified … higher harmonics, e.g. ( 3* ħw3 )
à eigenmodes … coupled … combination bands, e.g. ( ħw1 + ħw3 )

https://en.wikipedia.org/wiki/Color_of_water

Specific example for H2O
à 698 nm absorption from ( ħw1 + 3* ħw3 ), but many other combinations contribute
à this takes vibrational excitations into the visible !!!

Liquid water vs gas phase H2O
à broadening of lines
à librations in addition to vibrations

www.lsbu.ac.uk/water

Anharmonicity
à energy Ev = ( v + 1/2 ) ħwe − (v + 1/2 )2 ħwexe +   higher terms
à with anharmonicity parameter xe (usually << 1)
à in lowest correction we find       D v = +- 1, +-2
à if higher orders are considered, intensity scales approximately as
à 1  :  xe :  xe2 :  xe3 ...



Some notes on the (an)harmonic oscillator
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Anharmonicity changes what we are used to

à selection rules … modified … higher harmonics, e.g. ( 3* ħw3 )
à eigenmodes … coupled … combination bands, e.g. ( ħw1 + ħw3 )

https://en.wikipedia.org/wiki/Color_of_water

Specific example for H2O

à 698 nm absorption from ( ħw1 + 3* ħw3 ), 
but many other combinations contribute

à this takes vibrational excitations into the visible !!!

Liquid water vs gas phase H2O

à broadening of lines
à librations in addition to vibrations

www.lsbu.ac.uk/water
Hertel / Schulz // Tennyson



Some notes on the (an)harmonic oscillator
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Anharmonicity

à H2O in gas phase is already anharmonic, but condensed phase amplifies anharmonicity
à the anharmonicity is (largely) due to the H-bonds, where moving H away from O
     leads to increasing attraction by the neighboring O, 
     and thus flattening of the potential at larger distance

https://en.wikipedia.org/wiki/Color_of_water

Important test via isotope effects in H2O vs D2O

à note that for D2O the vibrational frequencies are lower (by ~ √2, but not quite; rather 1.36)
à thus the effect on the absorption in the visible is weaker
à thus D2O is "less blue" than H2O (supporting the notion of vibrations being responsible)
à looking at the l10 decrease in the spectrum, 
     we have (1.36)10  ~  20 x less absorption in the visible

www.lsbu.ac.uk/water
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Anharmonicity xe for diatomic molecules

à energy Ev = ( v + 1/2 ) ħwe − (v + 1/2 )2 ħwexe +   higher terms
à with anharmonicity parameter xe … relates to D and to b in the potential V(r)
à xe for diatomics typically (only) on the (few) % level (or even below)



Second:
Effect of anharmonicity
Thermal expansion a = d(l / l0) / dT
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Hunklinger

Side note: 
thermal expansion a has very similar T dependence as specific heat c(T);
explanation by Grüneisen based on thermodynamics (later)
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Second:
Effect of anharmonicity
Thermal expansion a = d(l / l0) / dT
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Third:
Fundamental effects 
of anharmonicity on phonons
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Before we discuss anharmonicity effects 
on phonons,
first a recap of structural dynamics
in the harmonic approximation

16



Phonons
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Restoring force on atom n  from atom n+1 (Hooke‘s law): 

Considering interactions only with next neighbors n+1 and  n-1 gives resulting force on atom n: 

which leads to the equations of motion

This is solved by the usual plane wave ansatz, which then gives the dispersion relation w(k)
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Harmonic approximation



Phonons
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Real dispersion of silicon
theoretically and experimentally
(Nach P. Giannozzi et al., 
Phys. Rev. B 43, 7231 (1991)).

(see Hunklinger, Fig.6.20)

The calculation of simple
systemen can be considered
understood, i.e. also the
interatomic potentials V(r) 

Hunklinger

Harmonic approximation



Phonons
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Integral over all phonon excitations
gives internal energy U

Debye model of the
specific heat c = dU/dT
works very well
with only one
material-specific parameter,
the Debye temperature q
(see Hunklinger, Fig.6.30)

Harmonic approximation

Hunklinger



Third:
Fundamental effects 
of anharmonicity on phonons
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Phonons calculated from the harmonic approximation
are no longer clean eigenstates when anharmonic terms are considered.
This leads to
- Phonon phonon interactions
- 3 phonon processes for 3rd order term
- 4 phonon processes for 4th order term
- …

w1(k1) w2(k2)

w3(k3)



Third:
Fundamental effects 
of anharmonicity on phonons
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- Finite lifetime of phonons,
around nanosec., picosec., …
broad range depending on system

Hunklinger, Fig.6.5
P.-F. Lory et al., Nature Comm. 8 (2017) 491 
M. Kaviany, Heat Transfer Physics, Cambridge University Press



Third:
Fundamental effects 
of anharmonicity on phonons
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- Heat conduction l by phonons
(only in crystal, not in glass)

l(T ) = (1/3) c v L

- Consider “phonon gas“ 
in analogy to classical gas with
c = specific heat
v = sound velocity
L = mean free path

Glass

Crystal
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Fourth:
Thermodynamic implications 
of anharmonicity
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- Violation of the Dulong-Petit law,
i.e. heat capacity is not constant
(and above 3NkB) for high T

Hunklinger



Fourth:
Thermodynamic implications 
of anharmonicity
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thermal expansion a has very similar
T dependence as specific heat c(T);
explanation by Grüneisen
based on thermodynamics

Hunklinger

g = ( a B ) / ( c r )



Structural Dynamics
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Internship at ILL in Grenoble
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What to remember

- inelastic neutron scattering still best tool to measure w(k)

Anharmonicity leads to many relevant additional effects
- the blue color of water
- thermal expansion a of the lattice
- elasticity parameters C(…) or B and G are f(T)
- heat capacity is not strictly constant at high T; 

deviation from Dulong-Petit rule c = 3NkB

- interaction of phonons with each other (phonon collisions)
- finite lifetime of phonons

wave solutions with linear superposition not stable
with nonlinear terms O (u2), i.e. ∂t ∂t u = C ∂x ∂x u  + O (u2)  

- heat conduction by phonons
- Grüneisen parameter connects a with c(T) etc

- phonon dispersion w(k) can be calculated well

Harmonic approximation and structural dynamics


